An Interactive Introduction to Complex Numbers

3. Exponentiations

Example 3.1:

Open the Applet Exponentiations and set $z=\sqrt{2} \cdot e^{22.5^{\circ} i}$ in exponential form. Then click on z^{n} and set $n=2$. Look at the result in exponential form. Note that $\left|z^{2}\right|=|z|^{2}=r^{2}$ and $\arg \left(z^{2}\right)=2 \cdot \varphi$.

Indeed, we calculate $z^{2}=\left(\sqrt{2} \cdot e^{22.5^{\circ} \cdot i}\right)^{2}=(\sqrt{2})^{2} \cdot\left(e^{22.5^{\circ} \cdot i}\right)^{2}=2 \cdot e^{22.5^{\circ} \cdot i 2}=2 \cdot e^{45^{\circ} i}$.

Shift n to $n=4$, which leads to $z^{4}=(\sqrt{2})^{4} \cdot\left(e^{22 \cdot 5^{\circ} \cdot i}\right)^{4}=4 \cdot e^{22 \cdot 5^{\circ} \cdot i \cdot 4}=4 \cdot e^{90^{\circ} i}$.

Rule 3.1

The n-th exponentiation of $z=r \cdot e^{\varphi i}$ in exponential form is $z^{n}=\left(r \cdot e^{\varphi i}\right)^{n}=r^{n} \cdot\left(e^{\varphi \cdot i}\right)^{n}$ $=r^{n} \cdot e^{n \cdot \varphi \cdot i} \quad n \in R$ with $\left|z^{n}\right|=|z|^{n}=r^{n}$ and $\arg \left(z^{n}\right)=n \cdot \varphi$.

There exists no general rule for the exponentiation of $z=a+b \cdot i$ in cartesian form. If $n \in N$, we could use the general binomial theorem. However, in most cases it is easier to transform $z=a+b \cdot i$ into exponential form and apply rule 3.1.

In case of $n=2$ the first binomial equation tells us that $z^{2}=(a+b \cdot i)^{2}=a^{2}+2 \cdot a \cdot b \cdot i+(b \cdot i)^{2}=a^{2}-b^{2}+2 \cdot a \cdot b \cdot i$.

Recall, we defined the exponent as $n \in R$, i. e. negative values of n are feasible as well.

Example 3.2:

Open the Applet Exponentiations and set $z=\sqrt{2} \cdot e^{22.5^{\circ} \cdot i}$ in exponential form. Then click on z^{n} and set $n=-2$. Of course, we get $z^{-2}=\left(\sqrt{2} \cdot e^{22.5^{\circ} i}\right)^{-2}=(\sqrt{2})^{-2} \cdot\left(e^{22.5^{\circ} i}\right)^{-2}$ $=0.5 \cdot e^{22.5^{\circ} \cdot i \cdot(-2)}=0.5 \cdot e^{-45^{\circ} i}=0.5 \cdot e^{31^{\circ} \cdot i}$.

The result can also be derived by calculating $z^{-2}=\frac{1}{z^{2}}$ just as with real numbers. Regarding example 3.1 we calculate $z^{-2}=\frac{1}{z^{2}}=\frac{1}{2 \cdot e^{45^{\circ} i}}=\frac{1 \cdot e^{00^{\circ} i}}{2 \cdot e^{45^{\circ} i}}=0.5 \cdot e^{-45^{\circ} i}=0.5 \cdot e^{315^{\circ} i}$.

Rule 3.2

$z^{-n}=\frac{1}{z^{n}} \quad n \in R, \operatorname{Re}(z) \neq 0 \vee \operatorname{Im}(z) \neq 0,|z| \neq 0$

Roots

The natural question to ask now is, whether $z=r \cdot e^{\varphi \cdot i}$ has also roots $w=\sqrt[k]{z}$ i.e. are there any complex numbers w solving for $w^{k}=z \quad k \in \mathbb{N}$?

Example 3.3 a

From example 3.1 we can conclude that $w=\sqrt{2} \cdot e^{22.5^{\circ} \cdot i}=1.4142 \cdot e^{22.5^{\circ} \cdot i}$ is a square root of $z=2 \cdot e^{45^{\circ} \cdot i}$ or, alternatively, a solution of $w^{2}=2 \cdot e^{45^{\circ} i}$. But is it the only one? To check this out, open the Applet Exponentiations and set $z=2 \cdot e^{45^{\circ} \cdot i}$ in exponential form. Then click on $w^{k}=z$ and set $k=2$. We see that $w^{2}=2 \cdot e^{45^{\circ} i}$ has two solutions: $w_{1}=1.4142 \cdot e^{22.5^{\circ} i}$ and $w_{2}=1.4142 \cdot e^{2025^{\circ} \cdot i}$.

What is the intuition behind the second solution w_{2} ? Recall that $z=2 \cdot e^{45^{\circ} \cdot i}$ corresponds to $z=2 \cdot e^{405^{\circ} \cdot i}$. Then $w_{2}=\left(2 \cdot e^{405^{\circ} i}\right)^{0.5}=\sqrt{2} \cdot e^{405^{\circ} \cdot i \cdot 0.5}=1.4142 \cdot e^{202.5^{\circ} i}$.
$z=2 \cdot e^{45^{\circ} \cdot i}$ also corresponds to $z=2 \cdot e^{765^{\circ} i}, z=2 \cdot e^{11125^{\circ} i}$ and so on. But why do further solutions not exist? We see that $w=\left(2 \cdot e^{75^{\circ} \cdot i}\right)^{0.5}=1.4142 \cdot e^{382.5^{\circ} i}$, which corresponds to $w_{1}=1.4142 \cdot e^{22.5^{\circ} i}$, whereas $\quad w=\left(2 \cdot e^{1125^{\circ} \cdot i}\right)^{0.5}=1.4142 \cdot e^{562.5^{\circ} \cdot i} \quad$ corresponds to $w_{2}=1.4142 \cdot e^{2025^{5} i}$.

Example 3.3 b:

Open the Applet Exponentiations and set $z=2 \cdot e^{45^{\circ} \cdot i}$ in exponential form. Then click on $w^{k}=z$ and set $k=3$ and $k=4$.

For $k=3$ we get $w_{1}=1.2599 \cdot e^{15^{\circ} i}, w_{2}=1.2599 \cdot e^{135^{\circ} i}$ and $w_{3}=1.2599 \cdot e^{255^{\circ} i}$.
For $k=4$ we get $w_{1}=1.1892 \cdot e^{11.25^{\circ} i}, \quad w_{2}=1.1892 \cdot e^{101.25^{\circ} i}, \quad w_{3}=1.1892 \cdot e^{191.25^{\circ} i}$ and $w_{4}=1.1892 \cdot e^{281.25^{\circ} i}$.

Rule 3.3 a

$w^{k}=z=r \cdot e^{\varphi \cdot i}$ has $k \in N$ solutions. The angle between succeeding solutions is $\frac{360^{\circ}}{k}$ (degree) or $\frac{2 \cdot \pi}{k}$ (radian).

Rule 3.3 b

The first solution of $w^{k}=z=r \cdot e^{\varphi \cdot i}$ is $w_{1}=\sqrt[k]{r} \cdot e^{\frac{\varphi}{k} i}$.

Rule 3.3 c

In degree the j-th solution of $w^{k}=z=r \cdot e^{\varphi \cdot i}$ is $w_{j}=\sqrt[k]{r} \cdot e^{\frac{\varphi+(j-1) \cdot 360^{\circ}}{k} i}$ with $\left|w_{j}\right|=\sqrt[k]{r}$ and $\varphi_{w j}=\arg w_{j}=\frac{\varphi+(j-1) \cdot 360^{\circ}}{k}$.

In radian the j-th solution of $w^{k}=z=r \cdot e^{\varphi \cdot i}$ is $w_{j}=\sqrt[k]{r} \cdot e^{\frac{\varphi+(j-1) \cdot \cdot \cdot \pi}{k} \cdot i}$ with $\left|w_{j}\right|=\sqrt[k]{r}$ and $\varphi_{w j}=\arg w_{j}=\frac{\varphi+(j-1) \cdot 2 \cdot \pi}{k}$.

There is no general rule for roots of complex numbers in cartesian form.

Exercise 3.1:

We have $z=1.5 \cdot e^{117^{\circ} \cdot i}$ and $z=5-2 \cdot i$. Determine z^{2}, z^{-3} and $z^{0.6}$ for both numbers. Use the Applet Exponentiations to check your answers.

Exercise 3.2:

Turn $z=5 \cdot i$ into exponential form. Then determine all solutions of $w^{5}=z$ and rewrite them in cartesian form. Use the Applet Exponentiations to check your answers.

