An Interactive Introduction to Complex Numbers

3. Exponentiations

Example 3.1:

Open the <u>Applet Exponentiations</u> and set $z = \sqrt{2} \cdot e^{22.5^{\circ} \cdot i}$ in exponential form. Then click on z^n and set n = 2. Look at the result in exponential form. Note that $|z^2| = |z|^2 = r^2$ and $\arg(z^2) = 2 \cdot \varphi$.

Indeed, we calculate $z^2 = \left(\sqrt{2} \cdot e^{22.5^{\circ} \cdot i}\right)^2 = \left(\sqrt{2}\right)^2 \cdot \left(e^{22.5^{\circ} \cdot i}\right)^2 = 2 \cdot e^{22.5^{\circ} \cdot i \cdot 2} = 2 \cdot e^{45^{\circ} \cdot i}$.

Shift *n* to n = 4, which leads to $z^4 = (\sqrt{2})^4 \cdot (e^{22.5^{\circ} \cdot i})^4 = 4 \cdot e^{22.5^{\circ} \cdot i \cdot 4} = 4 \cdot e^{90^{\circ} \cdot i}$.

Rule 3.1 The *n*-th exponentiation of $z = r \cdot e^{\varphi \cdot i}$ in exponential form is $z^n = (r \cdot e^{\varphi \cdot i})^n = r^n \cdot (e^{\varphi \cdot i})^n$ $= r^n \cdot e^{n \cdot \varphi \cdot i}$ $n \in \mathbb{R}$ with $|z^n| = |z|^n = r^n$ and $\arg(z^n) = n \cdot \varphi$.

There exists no general rule for the exponentiation of $z = a + b \cdot i$ in cartesian form. If $n \in \mathbb{N}$, we could use the general binomial theorem. However, in most cases it is easier to transform $z = a + b \cdot i$ into exponential form and apply rule 3.1.

In case of n=2 the first binomial equation tells us that $z^2 = (a+b\cdot i)^2 = a^2 + 2 \cdot a \cdot b \cdot i + (b \cdot i)^2 = a^2 - b^2 + 2 \cdot a \cdot b \cdot i$.

Recall, we defined the exponent as $n \in \mathbb{R}$, i. e. negative values of n are feasible as well.

Example 3.2:

Open the <u>Applet Exponentiations</u> and set $z = \sqrt{2} \cdot e^{22.5^{\circ} \cdot i}$ in exponential form. Then click on z^n and set n = -2. Of course, we get $z^{-2} = (\sqrt{2} \cdot e^{22.5^{\circ} \cdot i})^{-2} = (\sqrt{2})^{-2} \cdot (e^{22.5^{\circ} \cdot i})^{-2}$ $= 0.5 \cdot e^{22.5^{\circ} \cdot i \cdot (-2)} = 0.5 \cdot e^{-45^{\circ} \cdot i} = 0.5 \cdot e^{315^{\circ} \cdot i}$. The result can also be derived by calculating $z^{-2} = \frac{1}{z^2}$ just as with real numbers.

Regarding example 3.1 we calculate $z^{-2} = \frac{1}{z^2} = \frac{1}{2 \cdot e^{45^{\circ} \cdot i}} = \frac{1 \cdot e^{0^{\circ} \cdot i}}{2 \cdot e^{45^{\circ} \cdot i}} = 0.5 \cdot e^{-45^{\circ} \cdot i} = 0.5 \cdot e^{315^{\circ} \cdot i}$.

Rule 3.2

$$z^{-n} = \frac{1}{z^n} \quad n \in \mathbb{R}, \operatorname{Re}(z) \neq 0 \lor \operatorname{Im}(z) \neq 0, |z| \neq 0$$

Roots

The natural question to ask now is, whether $z = r \cdot e^{\varphi \cdot i}$ has also roots $w = \sqrt[k]{z}$ i.e. are there any complex numbers w solving for $w^k = z$ $k \in \mathbb{N}$?

Example 3.3 a

From example 3.1 we can conclude that $w = \sqrt{2} \cdot e^{22.5^{\circ}i} = 1.4142 \cdot e^{22.5^{\circ}i}$ is a square root of $z = 2 \cdot e^{45^{\circ}i}$ or, alternatively, a solution of $w^2 = 2 \cdot e^{45^{\circ}i}$. But is it the only one? To check this out, open the <u>Applet Exponentiations</u> and set $z = 2 \cdot e^{45^{\circ}i}$ in exponential form. Then click on $w^k = z$ and set k = 2. We see that $w^2 = 2 \cdot e^{45^{\circ}i}$ has two solutions: $w_1 = 1.4142 \cdot e^{22.5^{\circ}i}$ and $w_2 = 1.4142 \cdot e^{202.5^{\circ}i}$.

What is the intuition behind the second solution w_2 ? Recall that $z = 2 \cdot e^{45^{\circ} \cdot i}$ corresponds to $z = 2 \cdot e^{405^{\circ} \cdot i}$. Then $w_2 = (2 \cdot e^{405^{\circ} \cdot i})^{0.5} = \sqrt{2} \cdot e^{405^{\circ} \cdot i \cdot 0.5} = 1.4142 \cdot e^{202.5^{\circ} \cdot i}$.

 $z = 2 \cdot e^{45^{\circ} \cdot i}$ also corresponds to $z = 2 \cdot e^{765^{\circ} \cdot i}$, $z = 2 \cdot e^{1'125^{\circ} \cdot i}$ and so on. But why do further solutions not exist? We see that $w = (2 \cdot e^{765^{\circ} \cdot i})^{0.5} = 1.4142 \cdot e^{382.5^{\circ} \cdot i}$, which corresponds to $w_1 = 1.4142 \cdot e^{22.5^{\circ} \cdot i}$, whereas $w = (2 \cdot e^{1'125^{\circ} \cdot i})^{0.5} = 1.4142 \cdot e^{562.5^{\circ} \cdot i}$ corresponds to $w_2 = 1.4142 \cdot e^{202.5^{\circ} \cdot i}$.

Example 3.3 b:

Open the <u>Applet Exponentiations</u> and set $z = 2 \cdot e^{45^{\circ} \cdot i}$ in exponential form. Then click on $w^k = z$ and set k = 3 and k = 4.

2

Jens Siebel: An Interactive Introduction to Complex Numbers 3. Exponentiations

For k = 3 we get $w_1 = 1.2599 \cdot e^{15^{\circ} \cdot i}$, $w_2 = 1.2599 \cdot e^{135^{\circ} \cdot i}$ and $w_3 = 1.2599 \cdot e^{255^{\circ} \cdot i}$. For k = 4 we get $w_1 = 1.1892 \cdot e^{11.25^{\circ} \cdot i}$, $w_2 = 1.1892 \cdot e^{101.25^{\circ} \cdot i}$, $w_3 = 1.1892 \cdot e^{191.25^{\circ} \cdot i}$ and $w_4 = 1.1892 \cdot e^{281.25^{\circ} \cdot i}$.

Rule 3.3 a

 $w^k = z = r \cdot e^{\varphi \cdot i}$ has $k \in \mathbb{N}$ solutions. The angle between succeeding solutions is $\frac{360^\circ}{k}$ (degree) or $\frac{2 \cdot \pi}{k}$ (radian).

Rule 3.3 b

The first solution of $w^k = z = r \cdot e^{\varphi \cdot i}$ is $w_1 = \sqrt[k]{r} \cdot e^{\frac{\varphi}{k} i}$.

Rule 3.3 c

In degree the *j*-th solution of $w^k = z = r \cdot e^{\varphi \cdot i}$ is $w_j = \sqrt[k]{r} \cdot e^{\frac{\varphi + (j-1)\cdot 360^\circ}{k} \cdot i}$ with $|w_j| = \sqrt[k]{r}$ and $\varphi_{wj} = \arg w_j = \frac{\varphi + (j-1)\cdot 360^\circ}{k}$. In radian the *j*-th solution of $w^k = z = r \cdot e^{\varphi \cdot i}$ is $w_j = \sqrt[k]{r} \cdot e^{\frac{\varphi + (j-1)\cdot 2\cdot \pi}{k} \cdot i}$ with $|w_j| = \sqrt[k]{r}$ and $\varphi_{wj} = \arg w_j = \frac{\varphi + (j-1)\cdot 2\cdot \pi}{k}$.

There is no general rule for roots of complex numbers in cartesian form.

Exercise 3.1:

We have $z = 1.5 \cdot e^{117^{\circ} \cdot i}$ and $z = 5 - 2 \cdot i$. Determine z^2 , z^{-3} and $z^{0.6}$ for both numbers. Use the <u>Applet Exponentiations</u> to check your answers.

Exercise 3.2:

Turn $z = 5 \cdot i$ into exponential form. Then determine all solutions of $w^5 = z$ and rewrite them in cartesian form. Use the <u>Applet Exponentiations</u> to check your answers.